Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Cell Rep Med ; 4(6): 101088, 2023 06 20.
Article in English | MEDLINE | ID: covidwho-2328298

ABSTRACT

The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.


Subject(s)
COVID-19 , Common Cold , Humans , T-Lymphocytes , SARS-CoV-2 , Cross Reactions
2.
Int Immunol ; 2023 May 06.
Article in English | MEDLINE | ID: covidwho-2313896

ABSTRACT

In this brief opinion piece, we highlight our studies characterizing adaptive SARS-CoV-2 immune responses in infection and vaccination, and the ability of SARS-CoV-2-specific T cells to recognize emerging variants of concern, and the role of pre-existing cross-reactive T cells. In the context of the debate on correlates of protection, the pandemic's progression in the past three years underlined the need to consider how different adaptive immune responses might differentially contribute to protection from SARS-CoV-2 infection versus COVID-19 disease. Lastly, we discuss how cross-reactive T cell responses may be useful in generating a broad adaptive immunity, recognizing different variants and viral families. Considering vaccines with broadly conserved antigens could improve preparedness for future infectious disease outbreaks.

3.
EBioMedicine ; 91: 104563, 2023 May.
Article in English | MEDLINE | ID: covidwho-2299960

ABSTRACT

BACKGROUND: The Omicron variant has challenged the control of the COVID-19 pandemic due to its immuno-evasive properties. The administration of a booster dose of a SARS-CoV-2 vaccine showed positive effects in the immunogenicity against SARS-CoV-2, effect that is even enhanced after the administration of a second booster. METHODS: During a phase-3 clinical trial, we evaluated the effect of a second booster of CoronaVac®, an inactivated vaccine administered 6 months after the first booster, in the neutralization of SARS-CoV-2 (n = 87). In parallel, cellular immunity (n = 45) was analyzed in stimulated peripheral mononuclear cells by flow cytometry and ELISPOT. FINDINGS: Although a 2.5-fold increase in neutralization of the ancestral SARS-CoV-2 was observed after the second booster when compared with prior its administration (Geometric mean units p < 0.0001; Geometric mean titer p = 0.0002), a poor neutralization against the Omicron variant was detected. Additionally, the activation of specific CD4+ T lymphocytes remained stable after the second booster and, importantly, equivalent activation of CD4+ T lymphocytes against the Omicron variant and the ancestral SARS-CoV-2 were found. INTERPRETATION: Although the neutralizing response against the Omicron variant after the second booster of CoronaVac® was slightly increased, these levels are far from those observed against the ancestral SARS-CoV-2 and could most likely fail to neutralize the virus. In contrast, a robust CD4+T cell response may confer protection against the Omicron variant. FUNDING: The Ministry of Health, Government of Chile, the Confederation of Production and Commerce, Chile and SINOVAC Biotech.NIHNIAID. The Millennium Institute on Immunology and Immunotherapy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Vaccines, Inactivated , Antibodies, Viral , Antibodies, Neutralizing
4.
Diagnostics (Basel) ; 13(7)2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2290942

ABSTRACT

Immune memory to SARS-CoV-2 is key for establishing herd immunity and limiting the spread of the virus. The duration and qualities of T-cell-mediated protection in the settings of constantly evolving pathogens remain an open question. We conducted a cross-sectional study of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses at several time points over 18 months (30-750 days) post mild/moderate infection with the aim to identify suitable methods and biomarkers for evaluation of long-term T-cell memory in peripheral blood. Included were 107 samples from 95 donors infected during the periods 03/2020-07/2021 and 09/2021-03/2022, coinciding with the prevalence of B.1.1.7 (alpha) and B.1.617.2 (delta) variants in Bulgaria. SARS-CoV-2-specific IFNγ+ T cells were measured in ELISpot in parallel with flow cytometry detection of AIM+ total and stem cell-like memory (TSCM) CD4+ and CD8+ T cells after in vitro stimulation with peptide pools corresponding to the original and delta variants. We show that, unlike IFNγ+ T cells, AIM+ virus-specific CD4+ and CD8+ TSCM are more adequate markers of T cell memory, even beyond 18 months post-infection. In the settings of circulating and evolving viruses, CD8+ TSCM is remarkably stable, back-differentiated into effectors, and delivers immediate protection, regardless of the initial priming strain.

5.
Commun Biol ; 6(1): 374, 2023 04 07.
Article in English | MEDLINE | ID: covidwho-2295993

ABSTRACT

Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key determinant of disease severity. However, how metabolic perturbations influence immunological function during COVID-19 remains unclear. Here, using a combination of high-dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent metabolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysregulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation. Taken together, our study provides critical insight regarding the cellular mechanisms underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and highlights immunometabolism as a promising therapeutic target for COVID-19 treatment.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , COVID-19 Drug Treatment
6.
Cell Rep Med ; 2(7): 100355, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-2283611

ABSTRACT

The emergence of SARS-CoV-2 variants with evidence of antibody escape highlight the importance of addressing whether the total CD4+ and CD8+ T cell recognition is also affected. Here, we compare SARS-CoV-2-specific CD4+ and CD8+ T cells against the B.1.1.7, B.1.351, P.1, and CAL.20C lineages in COVID-19 convalescents and in recipients of the Moderna (mRNA-1273) or Pfizer/BioNTech (BNT162b2) COVID-19 vaccines. The total reactivity against SARS-CoV-2 variants is similar in terms of magnitude and frequency of response, with decreases in the 10%-22% range observed in some assay/VOC combinations. A total of 7% and 3% of previously identified CD4+ and CD8+ T cell epitopes, respectively, are affected by mutations in the various VOCs. Thus, the SARS-CoV-2 variants analyzed here do not significantly disrupt the total SARS-CoV-2 T cell reactivity; however, the decreases observed highlight the importance for active monitoring of T cell reactivity in the context of SARS-CoV-2 evolution.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Young Adult
7.
Antiviral Res ; 212: 105580, 2023 04.
Article in English | MEDLINE | ID: covidwho-2249370

ABSTRACT

Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Brain , Antiviral Agents , Disease Models, Animal
8.
Front Immunol ; 13: 929849, 2022.
Article in English | MEDLINE | ID: covidwho-2252157

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a protean disease causing different degrees of clinical severity including fatality. In addition to humoral immunity, antigen-specific T cells may play a critical role in defining the protective immune response against SARS-CoV-2, the virus that causes this disease. As a part of a longitudinal cohort study in Bangladesh to investigate B and T cell-specific immune responses, we sought to evaluate the activation-induced marker (AIM) and the status of different immune cell subsets during a COVID-19 infection. We analyzed a total of 115 participants, which included participants with asymptomatic, mild, moderate, and severe clinical symptoms. We observed decreased mucosal-associated invariant T (MAIT) cell frequency on the initial days of the COVID-19 infection in symptomatic patients compared to asymptomatic patients. However, natural killer (NK) cells were found to be elevated in symptomatic patients just after the onset of the disease compared to both asymptomatic patients and healthy individuals. Moreover, we found a significant increase of AIM+ (both OX40+CD137+ and OX40+CD40L+) CD4+ T cells in moderate and severe COVID-19 patients in response to SARS-CoV-2 peptides (especially spike peptides) compared to pre-pandemic controls who are unexposed to SARS-CoV-2. Notably, we did not observe any significant difference in the CD8+ AIMs (CD137+CD69+), which indicates the exhaustion of CD8+ T cells during a COVID-19 infection. These findings suggest that patients who recovered from moderate and severe COVID-19 were able to mount a strong CD4+ T-cell response against shared viral determinants that ultimately induced T cells to mount further immune responses to SARS-CoV-2.


Subject(s)
COVID-19 , Bangladesh/epidemiology , CD40 Ligand , CD8-Positive T-Lymphocytes , Humans , Immunity, Humoral , Longitudinal Studies , SARS-CoV-2 , Severity of Illness Index
9.
Ann N Y Acad Sci ; 1521(1): 32-45, 2023 03.
Article in English | MEDLINE | ID: covidwho-2228474

ABSTRACT

Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Viral Immunity: Basic Mechanisms and Therapeutic Applications." This report presents concise summaries from several of the symposium presenters.


Subject(s)
Influenza, Human , Pandemics , Humans , Influenza, Human/epidemiology
10.
Cell Rep Med ; 4(1): 100898, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2165956

ABSTRACT

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposures, from infection or vaccination, can potently boost spike antibody responses. Less is known about the impact of repeated exposures on T cell responses. Here, we compare the prevalence and frequency of peripheral SARS-CoV-2-specific T cell and immunoglobulin G (IgG) responses in 190 individuals with complex SARS-CoV-2 exposure histories. As expected, an increasing number of SARS-CoV-2 spike exposures significantly enhances the magnitude of IgG responses, while repeated exposures improve the number of T cell responders but have less impact on SARS-CoV-2 spike-specific T cell frequencies in the circulation. Moreover, we find that the number and nature of exposures (rather than the order of infection and vaccination) shape the spike immune response, with spike-specific CD4 T cells displaying a greater polyfunctional potential following hybrid immunity compared with vaccination only. Characterizing adaptive immunity from an evolving viral and immunological landscape may inform vaccine strategies to elicit optimal immunity as the pandemic progress.


Subject(s)
COVID-19 , Immunoglobulin G , T-Lymphocytes , Humans , Antibody Formation , CD4-Positive T-Lymphocytes , COVID-19/epidemiology , SARS-CoV-2
12.
J Neurol Sci ; 444: 120510, 2023 01 15.
Article in English | MEDLINE | ID: covidwho-2122629

ABSTRACT

BACKGROUND AND OBJECTIVES: Parkinson's disease (PD) is associated with a heightened inflammatory state, including activated T cells. However, it is unclear whether these PD T cell responses are antigen specific or more indicative of generalized hyperresponsiveness. Our objective was to measure and compare antigen-specific T cell responses directed towards antigens derived from commonly encountered human pathogens/vaccines in patients with PD and age-matched healthy controls (HC). METHODS: Peripheral blood mononuclear cells (PBMCs) from 20 PD patients and 19 age-matched HCs were screened. Antigen specific T cell responses were measured by flow cytometry using a combination of the activation induced marker (AIM) assay and intracellular cytokine staining. RESULTS: Here we show that both PD patients and HCs show similar T cell activation levels to several antigens derived from commonly encountered human pathogens/vaccines in the general population. Similarly, we also observed no difference between HC and PD in the levels of CD4 and CD8 T cell derived cytokines produced in response to any of the common antigens tested. These antigens encompassed both viral (coronavirus, rhinovirus, respiratory syncytial virus, influenza, cytomegalovirus) and bacterial (pertussis, tetanus) targets. CONCLUSIONS: These results suggest the T cell dysfunction observed in PD may not extend itself to abnormal responses to commonly encountered or vaccine-target antigens. Our study supports the notion that the targets of inflammatory T cell responses in PD may be more directed towards autoantigens like α-synuclein (α-syn) rather than common foreign antigens.


Subject(s)
Parkinson Disease , Vaccines , Humans , T-Lymphocytes , Leukocytes, Mononuclear , Cytokines
13.
Cell Rep Med ; : 100833, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2119962

ABSTRACT

GM-CSF promotes myelopoiesis and inflammation, and GM-CSF blockade is being evaluated as a treatment for COVID-19-associated hyperinflammation. Alveolar GM-CSF is, however, required for monocytes to differentiate into alveolar macrophages (AMs) that control alveolar homeostasis. By mapping cross-species AM development to clinical lung samples, we discovered that COVID-19 is marked by defective GM-CSF-dependent AM instruction and accumulation of pro-inflammatory macrophages. In a multi-center, open-label RCT in 81 non-ventilated COVID-19 patients with respiratory failure, we found that inhalation of rhu-GM-CSF did not improve mean oxygenation parameters compared with standard treatment. However, more patients on GM-CSF had a clinical response, and GM-CSF inhalation induced higher numbers of virus-specific CD8 effector lymphocytes and class-switched B cells, without exacerbating systemic hyperinflammation. This translational proof-of-concept study provides a rationale for further testing of inhaled GM-CSF as a non-invasive treatment to improve alveolar gas exchange and simultaneously boost antiviral immunity in COVID-19. This study is registered at ClinicalTrials.gov (NCT04326920) and EudraCT (2020-001254-22).

14.
mBio ; : e0131122, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2119438

ABSTRACT

Multiple vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been evaluated in clinical trials. However, trials addressing the immune response in the pediatric population are scarce. The inactivated vaccine CoronaVac has been shown to be safe and immunogenic in a phase 1/2 clinical trial in a pediatric cohort in China. Here, we report interim safety and immunogenicity results of a phase 3 clinical trial for CoronaVac in healthy children and adolescents in Chile. Participants 3 to 17 years old received two doses of CoronaVac in a 4-week interval until 31 December 2021. Local and systemic adverse reactions were registered for volunteers who received one or two doses of CoronaVac. Whole-blood samples were collected from a subgroup of 148 participants for humoral and cellular immunity analyses. The main adverse reaction reported after the first and second doses was pain at the injection site. Four weeks after the second dose, an increase in neutralizing antibody titer was observed in subjects relative to their baseline visit. Similar results were found for activation of specific CD4+ T cells. Neutralizing antibodies were identified against the Delta and Omicron variants. However, these titers were lower than those for the D614G strain. Importantly, comparable CD4+ T cell responses were detected against these variants of concern. Therefore, CoronaVac is safe and immunogenic in subjects 3 to 17 years old, inducing neutralizing antibody secretion and activating CD4+ T cells against SARS-CoV-2 and its variants. (This study has been registered at ClinicalTrials.gov under no. NCT04992260.) IMPORTANCE This work evaluated the immune response induced by two doses of CoronaVac separated by 4 weeks in healthy children and adolescents in Chile. To date, few studies have described the effects of CoronaVac in the pediatric population. Therefore, it is essential to generate knowledge regarding the protection of vaccines in this population. Along these lines, we reported the anti-S humoral response and cellular immune response to several SARS-CoV-2 proteins that have been published and recently studied. Here, we show that a vaccination schedule consisting of two doses separated by 4 weeks induces the secretion of neutralizing antibodies against SARS-CoV-2. Furthermore, CoronaVac induces the activation of CD4+ T cells upon stimulation with peptides from the proteome of SARS-CoV-2. These results indicate that, even though the neutralizing antibody response induced by vaccination decreases against the Delta and Omicron variants, the cellular response against these variants is comparable to the response against the ancestral strain D614G, even being significantly higher against Omicron.

15.
JCI Insight ; 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2117617

ABSTRACT

Despite the widespread use of SARS-CoV-2-specific monoclonal antibody (mAb) therapy for the treatment of acute COVID-19, the impact of this therapy on the development of SARS-CoV-2-specific T cell responses has been unknown, resulting in uncertainty as to whether anti-SARS-CoV-2 mAb administration may result in failure to generate immune memory. Alternatively, it has been suggested that SARS-CoV-2-specific mAb may enhance adaptive immunity to SARS-CoV-2 via a "vaccinal effect." Bamlanivimab (Eli Lilly) is a recombinant human IgG1 that was granted FDA emergency use authorization for the treatment of mild to moderate COVID-19 in those at high risk for progression to severe disease. Here, we compared SARS-CoV-2 specific CD4+ and CD8+ T cell responses of 95 individuals from the ACTIV-2/A5401 clinical trial 28 days after treatment with 700 mg bamlanivimab versus placebo. SARS-CoV-2-specific T cell responses were evaluated using activation induced marker (AIM) assays in conjunction with intracellular cytokine staining. We demonstrate that most individuals with acute COVID-19 develop SARS-CoV-2-specific T cell responses. Overall, our findings suggest that the quantity and quality of SARS-CoV-2-specific T cell memory was robust in individuals who received bamlanivimab for acute COVID-19. Receipt of bamlanivimab during acute COVID-19 neither diminished nor enhanced SARS-CoV-2-specific cellular immunity.

16.
Sci Immunol ; : eadf1421, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2116491

ABSTRACT

Numerous safe and effective COVID-19 vaccines have been developed worldwide that utilize various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S, as compared to vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated solely by RBD-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants than current technologies.

17.
Front Immunol ; 13: 1032411, 2022.
Article in English | MEDLINE | ID: covidwho-2109771

ABSTRACT

Coronavac is a widely used SARS-CoV-2 inactivated vaccine, but its long-term immune response assessment is still lacking. We evaluated SARS-CoV-2-specific immune responses, including T cell activation markers, antigen-specific cytokine production and antibody response following vaccination in 53 adult and elderly individuals participating in a phase 3 clinical trial. Activated follicular helper T (Tfh), non-Tfh and memory CD4+ T cells were detected in almost all subjects early after the first vaccine dose. Activated memory CD4+ T cells were predominantly of central and effector memory T cell phenotypes and were sustained for at least 6 months. We also detected a balanced Th1-, Th2- and Th17/Th22-type cytokine production that was associated with response over time, together with particular cytokine profile linked to poor responses in older vaccinees. SARS-CoV-2-specific IgG levels peaked 14 days after the second dose and were mostly stable over one year. CoronaVac was able to induce a potent and durable antiviral antigen-specific cellular response and the cytokine profiles related to the response over time and impacted by the senescence were defined.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Viral , Cytokines , Immunity, Cellular , Immunoglobulin G , SARS-CoV-2 , Vaccination
18.
Elife ; 112022 10 13.
Article in English | MEDLINE | ID: covidwho-2067163

ABSTRACT

Background: The development of vaccines to control the coronavirus disease 2019 (COVID-19) pandemic progression is a worldwide priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile. Methods: This study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged ≥18 years. Volunteers received two doses of CoronaVac separated by 2 (0-14 schedule) or 4 weeks (0-28 schedule); 2302 volunteers were enrolled, 440 were part of the immunogenicity arm, and blood samples were obtained at different times. Samples from a single center are reported. Humoral immune responses were evaluated by measuring the neutralizing capacities of circulating antibodies. Cellular immune responses were assessed by ELISPOT and flow cytometry. Correlation matrixes were performed to evaluate correlations in the data measured. Results: Both schedules exhibited robust neutralizing capacities with the response induced by the 0-28 schedule being better. No differences were found in the concentration of antibodies against the virus and different variants of concern (VOCs) between schedules. Stimulation of peripheral blood mononuclear cells (PBMCs) with Mega pools of Peptides (MPs) induced the secretion of interferon (IFN)-γ and the expression of activation induced markers in CD4+ T cells for both schedules. Correlation matrixes showed strong correlations between neutralizing antibodies and IFN-γ secretion. Conclusions: Immunization with CoronaVac in Chilean adults promotes robust cellular and humoral immune responses. The 0-28 schedule induced a stronger humoral immune response than the 0-14 schedule. Funding: Ministry of Health, Government of Chile, Confederation of Production and Commerce & Millennium Institute on Immunology and Immunotherapy, Chile. Clinical trial number: NCT04651790.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization Schedule , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Immunity, Humoral , Interferons , Leukocytes, Mononuclear , SARS-CoV-2
19.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2057579

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a protean disease causing different degrees of clinical severity including fatality. In addition to humoral immunity, antigen-specific T cells may play a critical role in defining the protective immune response against SARS-CoV-2, the virus that causes this disease. As a part of a longitudinal cohort study in Bangladesh to investigate B and T cell-specific immune responses, we sought to evaluate the activation-induced marker (AIM) and the status of different immune cell subsets during a COVID-19 infection. We analyzed a total of 115 participants, which included participants with asymptomatic, mild, moderate, and severe clinical symptoms. We observed decreased mucosal-associated invariant T (MAIT) cell frequency on the initial days of the COVID-19 infection in symptomatic patients compared to asymptomatic patients. However, natural killer (NK) cells were found to be elevated in symptomatic patients just after the onset of the disease compared to both asymptomatic patients and healthy individuals. Moreover, we found a significant increase of AIM+ (both OX40+CD137+ and OX40+CD40L+) CD4+ T cells in moderate and severe COVID-19 patients in response to SARS-CoV-2 peptides (especially spike peptides) compared to pre-pandemic controls who are unexposed to SARS-CoV-2. Notably, we did not observe any significant difference in the CD8+ AIMs (CD137+CD69+), which indicates the exhaustion of CD8+ T cells during a COVID-19 infection. These findings suggest that patients who recovered from moderate and severe COVID-19 were able to mount a strong CD4+ T-cell response against shared viral determinants that ultimately induced T cells to mount further immune responses to SARS-CoV-2.

20.
Immunity ; 55(9): 1732-1746.e5, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2015472

ABSTRACT

Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , Immunity, Humoral , RNA, Messenger/genetics , Syndrome , Vaccination , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL